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Abstract.—Organismal metabolic rates reflect the interaction of environmental and physiological factors.
Thus, calcifying organisms that record growth history can provide insight into both the ancient environ-
ments in which they lived and their own physiology and life history. However, interpreting them requires
understanding which environmental factors have the greatest influence on growth rate and the extent to
which evolutionary history constrains growth rates across lineages. We integrated satellite measurements
of sea-surface temperature and chlorophyll-a concentration with a database of growth coefficients, body
sizes, and life spans for 692 populations of livingmarine bivalves in 195 species, set within the context of a
new maximum-likelihood phylogeny of bivalves. We find that environmental predictors overall explain
only a small proportion of variation in growth coefficient across all species; temperature is a better pre-
dictor of growth coefficient than food supply, and growth coefficient is somewhat more variable at higher
summer temperatures. Growth coefficients exhibitmoderate phylogenetic signal, and taxonomicmember-
ship is a stronger predictor of growth coefficient than any environmental predictor, but phylogenetic iner-
tia cannot fully explain the disjunction between our findings and the extensive body of work
demonstrating strong environmental control on growth rateswithin taxa. Accounting for evolutionary his-
tory is critical when considering shells as historical archives. The weak relationship between variation in
food supply and variation in growth coefficient in our data set is inconsistent with the hypothesis that the
increase in mean body size through the Phanerozoic was driven by increasing productivity enabling faster
growth rates.
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Introduction

Several lines of evidence suggest that the
mean energy requirements and metabolic
rates of metazoans have generally increased

through time (Bambach 1993; Payne and Finne-
gan 2006; Finnegan et al. 2011; Payne et al. 2014;
Smith et al. 2016). A variety of potential intrin-
sic (e.g., physiological/behavioral/ecological)
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